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Thin aerofoil theory permits impermeable aerofoils to be analysed by decomposing their
chordwise pressure jump into a series of weighted Chebyshev polynomials. However, this
approach exhibits singular behaviour when the aerofoils become impermeable. In the present
research, we generalise the Chebyshev expansion approach by instead choosing an expansion in
terms of weighted Jacobi polynomials that can represent appropriately the singular behaviours
at porous edges. Analytic expressions for the parameters of the Jacobi polynomials are derived
via asymptotic analysis. The ensuing equations are collocated at the Jacobi nodes, which results
in a linear system for the coefficients of the Jacobi polynomials. The approach is shown to be
valid for porosity gradients that are continuous or piecewise-continuous, such as in the case
of a partially porous aerofoil. A numerical validation is presented that demonstrates that the
scheme converges exponentially fast.

I. Introduction
Porous aerofoils have received considerable attention over recent years due to their apparent ability to reduce acoustic

emissions [1–4]. It is generally believed that porosity at the trailing-edge weakens the scattering of turbulence there
and therefore reduces sound production. However, the aerodynamics of porous aerofoils have been shown to be poor
in comparison to impermeable aerofoils [5–7]. Consequently, aircraft designers are faced with the difficult task of
balancing the aeroacoustic advantages of porous aerofoils with the aerodynamic disadvantages.

With the goal to assess these aerodynamic effects, Hajian and Jaworski [5] developed an analytic formulation and
solution for the steady aerodynamic loads on airfoils with arbitrary, realistic porosity distributions to investigate the
impact of a variation in the porosity distribution. This analysis was later extended to determine the unsteady forces
on an arbitrarily deforming panel with a Hölder-continuous porosity distribution [8]. An analytical expression for the
non-circulatory pressure distribution was presented and evaluated for the special cases of uniform and variable-porosity
panels undergoing harmonic deformations, where the effect of the panel end conditions was also investigated.

A comprehensive unsteady aerodynamic theory for lifting porous bodies is essential to predict the aeroelastic stability
and aeroacoustic emissions from porous airfoils. The classical theory of Theodorsen [9] and its later extensions [10]
developed closed-form expressions for the unsteady aerodynamic forces on a piecewise-continuous rigid and impermeable
airfoil undergoing small-amplitude harmonic motions in a uniform incompressible flow. These analyses separated
the total fluid forces or moments into circulatory and non-circulatory parts, which correspond respectively to the
contribution of the unsteady shedding of vorticity into the wake and the non-lifting hydrodynamic sloshing of fluid about
the airfoil [11]. These unsteady fluid forces also contribute fundamentally to the airfoil gust response problem [11, 12]
and to the aerodynamic noise generation from gust encounters [13] and vortex-structure interactions [14]. Therefore, an
extension of these classical models to include the effects of porosity distributions is desired. However, the singular
integral equation describing the generalized aerodynamics of unsteady porous airfoils with a wake cannot be treated by
conventional analysis (e.g., [15]), and a different mathematical approach is required.
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There are many methods available for the numerical solutions for singular integral equations [16]. Numerical
solutions in terms of orthogonal polynomials were first considered by Erdogan [17], who expressed the solution function
as a series of weighted Chebyshev polynomials. However, this numerical approach was limited to particular endpoint
behaviours until the generalisation to Jacobi polynomials allowed a wide class of endpoint zeros and singularities [18].
In the present research we adapt the approach of [18] to porous aerofoils, including the generalisation to aerofoils with
discontinuous porosity gradients.

The expansion of the jump in surface pressure into a series of weighted Chebyshev polynomials has also been applied
to aerodynamic problems for impermeable [19] and permeable [20] aerofoils. The weighted Chebyshev expansion –
which is sometimes referred to as a Glauert Fourier series – is an essential feature of many reduced-order discrete-vortex
models [21, 22]. These models require detailed understanding of the pressure at the leading- and trailing-edges in order
to predict the vortex shedding. In particular, the leading-edge suction parameter must be accurately computed [21]. In
this article we will show that the Chebyshev expansion is ill-posed for porous aerofoils, and an expansion in terms of
weighted Jacobi polynomials is essential to capture the subtle behaviour at the endpoints.

The Jacobi polynomial solution technique of the present research has several powerful features. Firstly, the system is
straightforward to implement, and it is no more costly to compute than the solution for impermeable aerofoils. Secondly,
the solution is exact in many practical cases, or converges exponential fast in all. Thirdly, the method may be easily
extended to consider multiple interacting aerofoils, and even infinite cascades of aerofoils [23, 24]. Fourthly, and this is
the motivation for the present study, the method can be extended to consider the unsteady motions of porous aerofoils
where the classical singular integral approach breaks down. This last point is beyond the scope of the present article and
will form the basis of future work.

II. Numerical method
In this section we present our new numerical method. We begin by demonstrating why a typical Chebyshev

expansion is not valid for porous aerofoils, and continue by applying our new method to a steady porous aerofoil for
continuous and discontinuous porosity distributions. Analytic solutions are available for this steady problem, which
enables direct comparison for our numerical solution.

Adopting the analysis given in [5], the dimensionless pressure jump p along a porous aerofoil with camber line z(x)
is the solution to the singular integral equation

2ρUCR(x)p(x) −
1
π
−

∫ 1

−1

p(t)
t − x

dt = 4
dz
dx
(x), −1 < x < 1, (1)

where ρ, U and C represent the air density, mean flow velocity, and the porosity coefficient respectively. The solution
to equation (1) is the focus of the present research. We also enforce that our solution must satisfy a Kutta condition,
namely that the pressure jump must vanish at the trailing-edge. We note that analytic solutions to (1) are available [5],
but we seek to develop a numerical solution that can be extended to the unsteady scenario.

A. Failure of the Chebyshev approach
We now show that an expansion in terms of Chebyshev polynomials is inappropriate for the present problem. A

typical approach [19] to solve (1) for impermeable aerofoils is to write

p(x) = p0

√
1 − x
1 + x

+
√

1 − x2
∞∑
n=1

pnUn−1(x), (2)

where Un are the Chebyshev polynomials of the second kind and pn are coefficients to be determined. By construction,
this series satisfies the steady Kutta condition. However, we now show that this choice of series leads to spurious results
at the endpoints.
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By sending x → −1, we obtain the following asymptotic limits

ρUCR(x)p(x) ∼ ρUCR(−1)p0

√
2

1 + x
, (3)

−
1
π
−

∫ 1

−1

p(t)
t − x

dt ∼ Φ∗(x), (4)

4
dz
dx
(x) ∼ 4

dz
dx
(−1), (5)

where Φ∗(x) = o
(
(1 + x)−1/2) according to [15, (29.8)]. Substitution of these limits into (1) results in an equation

where the left hand side scales like (1 + x)−1/2 whereas the right hand side tends to a constant as x → −1. Asymptotic
analysis at the trailing-edge generates the same contradictions. Consequently, the Chebyshev expansion generates
spurious results at both endpoints. Since the leading- and trailing-edge vortex shedding is dominated at the endpoints, it
is crucial to correctly predict the pressure distribution there.

B. Steady aerofoils with continuous porosity distributions
We now adapt the Chebyshev expansion approach to derive a polynomial expansion that is uniformly valid.

1. Solution method
We speculatively write the pressure in the form

p(x) =
(1 − x)α

(1 + x)β
· p∗(x), (6)

where p∗(x) is a function that is Hölder continuous on x ∈ [−1, 1] and is non-zero at x = 1. This expression is informed
by the analytic solutions for (1) [5]. Substituting (6) into our singular integral equation (1) yields

2ρUCR(x)
(1 − x)α

(1 + x)β
· p∗(x) −

1
π
−

∫ 1

−1

(1 − t)α

(1 + t)β
·

p∗(t)
t − x

dt = 4
dz
dx
(−1). (7)

The next step is to determine α and β, which represent the intensity of the zero/singularity at the trailing-/leading-edge.
We first investigate the behaviour at the trailing edge. If we let x → −1, our singular integral equation (7) becomes, at
first order,

2ρUCR(−1)
2α

(1 + x)β
p∗(−1) − cot (βπ) ·

2α

(1 + x)β
p∗(−1) = 0, as x → −1,

and therefore we obtain

β =
1
π

cot−1 (2ρUCR(−1)) . (8)

Applying a similar approach at the trailing-edge yields, at first order,

2ρUCR(1)
(1 − x)α

2β
p∗(1) + C1 +

(1 − x)α

2β
p∗(1) · cot(απ) = 4

dz
dx
(1), as x → 1

where C1 is a constant. By matching (1 − x)α terms, we obtain

α =
1
π

cot−1 (2ρUCR(1)) . (9)

The results (8) and (9) are suggestive of the form of the pressure at the leading- and trailing-edges, respectively.
Consequently, we seek an expansion of the pressure as a sequence of weighted Jacobi polynomials,

p(x) = p0
(1 − x)α

(1 + x)β
+ (1 − x)α(1 + x)1−β

∞∑
n=1

pnPα,1−β
n−1 (x), (10)
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where Pa,b
n represents the nth Jacobi polynomial. The Jacobi polynomials are a classical family of orthogonal polynomials

[25] and represent a generalisation of Chebyshev polynomials. The orthogonality relation associated with the Jacobi
polynomials is∫ 1

−1
(1 − x)α (1 + x)β Pα,βm (x)P

α,β
n (x)dx =

2α+β+1

2n + α + β + 1
·
Γ(n + α + 1)Γ(n + β + 1)
Γ(n + α + β + 1)n!

, α, β > −1. (11)

Generally, we will denote the weight function as wa,b(x) B (1 − x)a(1 + x)b .
We may now substitute our Jacobi polynomials expansion (10) into our singular integral equation (1) to

2ρUCR(x)

(
p0w

α,−β(x) + wα,1−β(x)
∞∑
n=1

pnPα,1−β
n−1 (x)

)
−

1
π

(
p0w

α,−β(x)Qα,−β
0 (x) + wα,1−β(x)

∞∑
n=1

pnQα,1−β
n−1 (x)

)
= 4

dz
dx
(x), (12)

where Qα,β
n are the associated Jacobi functions of the second kind, which are expressible in terms of the hypergeometric

function [26]. Equation (12) may be more conveniently represented as

p0 f α,−β0 (x) +
∞∑
n=1

pn f α,1−β
n−1 (x) = 4

dz
dx
(x), (13)

where

f a,bn (x) = wa,b(x)
(
ψ(x)Pa,b

n (x) −
1
π

Qa,b
n (x)

)
. (14)

We now construct a linear system for the coefficients by truncating the infinite series at some N and collocating (14) at
the Jacobi nodes xj , which are the roots of the Jacobi polynomial Pα,1−β

N+1 . The resulting system is

p0 f α,−β0 (xj) +
N∑
n=1

pn f α,1−β
n−1 (xj) = 4

dz
dx
(xj), j = 1, · · · , N + 1. (15)

In matrix form we write

Fp = v.

where

{F}i, j =

{
f α,−β0 (xj), i = 0,

f α,1−β
i−1 (xj), i = 1, · · · , N,

(16)

and

{v} j = 4
dz
dx
(xj), j = 1, · · · , N + 1 (17)

{p}i = pi, i = 0, · · · , N . (18)

We now make the crucial observation that the columns (and rows) of F are linearly independent. It is straightforward to
verify this: if they were linearly dependent then there is an xj that solves Pα,1−βn (xj) = 0. However, this is impossible
due to the interlacing property of the zeros of orthogonal polynomials. Consequently F is invertible and we may write

p = F−1v. (19)
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2. Expressions for aerodynamic quantities
Compact expressions for relevant aerodynamic quantities are now available in terms of the coefficients of the Jacobi

expansion. For example, by the orthogonality properties of the Jacobi polynomials (11), the lift is given by

cL =
∫ 1

−1
p(t)dt = p0

2α−β+1

α − β + 1
·
Γ(α + 1)Γ(1 − β)
Γ(α − β + 1)

+ p1
2α+2−β

α + 2 − β
·
Γ(α + 1)Γ(2 − β)
Γ(α + 2 − β)

.

where p0 and p1 are the coefficients of the weighted Jacobi polynomials (10) defined in (19). We note that, in the
impermeable limit α, β→ 1/2, we recover the usual expression [27]

cL = π
(
p0 +

p1
2

)
.

C. Solution for discontinuous porosity distributions
We may also use the new method to find the pressure distribution for a partially porous aerofoil. These aerofoils

consist of an impermeable forward section and a permeable aft section [6]. It is generally believed that this aerofoil
design possess superior aerodynamic qualities compared to aerofoils that are uniformly porous [5–7]. We place the
permeable-impermeable junction at x = c, so that the singular integral equation for a steady, partially porous aerofoil
becomes

H(x − c)ψ(x)p(x) −
1
π
−

∫ 1

−1

p(t)
t − x

dt = 4
dz
dx
(x), (20)

where H(·) is the heaviside function, i.e.

H(x − c) =

{
0, x < c,
1, x > c,

(21)

and ψ(x) = 2ρUCR(x). We first note that we require p = 0 at x = c, otherwise there would be a discontinuity in the
seepage velocity through the wing. Consequently, we write the pressure in the form

p(x) = p∗(x)(x − c)γ, p∗(x) =
(1 − x)α

(1 + x)β
eiπγH(c−x) p̃(x), (22)

where p̃ is piecewise Hölder continuous. Applying a similar argument to the previous section via analysis of (20) at the
endpoints yields

α =
1
π

cot−1 (H(+1 − c)ψ(+1)) =
1
π

cot−1 (ψ(1)) , (23.a)

β =
1
π

cot−1 (H(−1 − c)ψ(−1)) =
1
2
. (23.b)

We now consider the asymptotic behaviour as x → c±, where c± = c ± 0. In these limits, note that (22) yields

p∗(c−) =
(1 − c)α

(1 + c)β
eiπγ p̃(c−), p∗(c+) =

(1 − c)α

(1 + c)β
p̃(c+).

If we substitute (22) into (20) and consider the limit x → c− then we obtain

−i
(
−

e−iγπ

2i sin(γπ)
(1 − c)α

(1 + c)β
p̃(c+) +

cot(γπ)
2i

(1 − c)α

(1 + c)β
eiπγ p̃(c−)

)
· (x − c)γ + C0 + Φ

∗
0(x) = 4

dz
dx
(c), (24)

where C0 is a constant, Φ∗0(x) = o ((x − c)γ), and we have used the asymptotic expansions found in [15].
By matching coefficients in (24), we see that the coefficient of (x − c)γ must vanish. Consequently, we obtain the

identity

p̃(c+) = cos(γπ)e2iπγ p̃(c−). (25)
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If we now consider x → c+ in (20) then we obtain

ψ(c+)
(1 − c)α

(1 + c)β
p̃(c+)(x − c)γ + i

(
eiγπ

2i sin(γπ)
(1 − c)α

(1 + c)β
eiπγ p̃(c−) −

cot(γπ)
2i

(1 − c)α

(1 + c)β
p̃(c+)

)
· (x − c)γ

+C1 + Φ
∗
1(x) = 4

dz
dx
(c),

where C1 is a constant and Φ∗1(x) = o ((x − c)γ). Again, the coefficient of (x − c)γ must vanish, i.e.

ψ(c+)p̃(c+) − i
(

eiγπ

2i sin(γπ)
eiπγ p̃(c−) −

cot(γπ)
2i

p̃(c+)
)
= 0. (26)

We now combine (25) and (26) to obtain

γ =
1
π

arctan(ψ(c+)) =
1
2
−

1
π

arccos(ψ(c+)).

In the case where R is a constant, ψ(x) ≡ ψ0 and (22) becomes

p(x) =
��� x − c
x + 1

���1/2 · ���� x − 1
x − c

����α p̃(x). (27)

Note that the above expression is equivalent to [7, eq. (13)]. We now set up the collocation scheme to solve (20). First
we use the substitutions

τ1(x) = −1 + 2
x + 1
1 + c

, −1 < x < c,

τ2(x) = 1 + 2
x − 1
1 − c

, c < x < 1,

so that the integral operator becomes

−

∫ 1

−1

p(t)
t − x

dt = −
∫ c

−1

p f (t)
t − x

dt + −
∫ 1

c

pa(t)
t − x

dt

=
1 + c

2
−

∫ 1

−1

p f (t(u1))

t(u1) − x
du1 +

1 − c
2
−

∫ 1

−1

pa (t(u2))

t(u2) − x
du2

= −

∫ 1

−1

Pf (u1)

u1 − τ1(x)
du1 + −

∫ 1

−1

Pa (u2)

u2 − τ2(x)
du2,

where Pf (u1) = p f (x(u1)) and Pa(u2) = pa(x(u1)).
We now consider τ1 and τ2 as independent variables and seek an expansion of the pressure distribution in terms of

Jacobi polynomials:

Pf (τ1) = p−0
(1 − τ1)

γ

(1 + τ1)1/2
+ (1 − τ1)

γ(1 + τ1)
1/2

∞∑
n=1

p−nPγ,1/2
n−1 (τ1) ,

Pa(τ2) = (1 − τ2)
γ(1 + τ2)

α
∞∑
n=1

p+nPα,γ
n−1 (τ2) .

Substitution of these representations into (20) yields equations on the forward and aft parts of the aerofoils. On
−1 < x < c we have

−

(
p−0w

γ,−1/2(τ1)Q
γ,−1/2
0 (τ1) + w

γ,1/2(τ1)

∞∑
n=1

p−nQγ,1/2
n−1 (τ1)

+wα,γ(τ2)

∞∑
n=1

p+nQα,γ
n−1(τ2)

)
= 4π

dz
dx
(x(τ1)), (28)
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and on c < x < 1 we have

πψ0w
γ,α(τ2)

∞∑
n=1

p+nPα,γ
n−1 (τ2) −

(
p−0w

γ,−1/2(τ1)Q
γ,−1/2
0 (τ1) + w

γ,1/2(τ1)

∞∑
n=1

p−nQγ,1/2
n−1 (τ1)

+wα,γ(τ2)

∞∑
n=1

p+nQα,γ
n−1(τ2)

)
= 4π

dz
dx
(x(τ2)). (29)

Similarly to the case for continuous porosity distributions, we truncate (28) and (29) at N− and N+ respectively. We
consider (28) as a function of τ1 and collocate at the zeros of Pγ,1/2

N−+1. Conversely, we consider (29) as a function of τ2

and collocate at the zeros of Pα,γ
N+

. This generates a linear (N− + N+ + 1) × (N− + N+ + 1) system. By using similar
reasoning to the previous section, we may show that the rows of the associated matrix are linearly independent, and the
matrix is therefore invertible and the system is considered solved.

III. Validation
In this section we present numerical validation of our new method. The convergence of the scheme is observed to

be exponentially fast for all tested parameters. In contrast, the Chebyshev expansion approach only to the continuous
porosity solution algebraically fast and did not converge to a solution at all for the piecewise-continuous porosity
problem.

A. Continuous porosity distributions
If p̃(x) is expressible as a polynomial of degree n, then the proposed solution method is exact with n Jacobi

polynomials. For example, consider a flat plate at angle of attack α? with constant porosity ψ0. The exact solution is
given by [5, B2] as

p(x) =
−4α?√
1 + ψ2

0

(
1 − x
1 + x

) 1
π cot−1(ψ0)

. (30)

Conversely, our collocation scheme (15) yields

p0 f k,−k0 (xj) +
N∑
n=1

pn f k,1−k
n−1 (xj) = −4α?, j = 1, · · · , N + 1.

Noting that f k,−k0 (x) is constant and the matrix M with entries {M}n, j = f k,1−k
n−1 (xj) has linearly independent rows, we

obtain

p0 =
−4α?√
1 + ψ0

,

pn = 0, n > 0,

and the analytic solution (30) is recovered.

B. Discontinuous porosity distribution
Exact solutions (not requiring Cauchy principal value integrals) are available when the porosity is constant and the

aerofoil geometry is simple. The pressure jump along a parabolic aerofoil at angle of attack α? with parabolic profile
β? is given by [7] as

p(x) =
2
(
α? + β?(1 + x − (1 − c) arctan(ψ0)/π)

)√
1 + H(x − c)ψ2

0

√
1 − x
1 + x

��� x − c
1 − x

���arctan(ψ0)/π
. (31)
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We now investigate the convergence of our method to this solution. We consider the relative L2 error, which is defined
as

εn =

√√√√∫ 1
−1 |p(x) − pn(x)|2 dx∫ 1

−1 |p(x)|
2 dx

,

where p is the exact solution and pn is the approximation using n Jacobi polynomials.
The error decays exponentially fast for a range of porosities, as illustrated in figures 1b and 2b. The slope of the line

appears to be the same regardless of the porosity. This trend can be attributed to the fact that the porosity effect on the
solution behaviour at the endpoints is accurately captured in the parameter of the Jacobi polynomials.

−1 −0.5 0 0.5 1
0

2

4

6

8

10

12

x

� � p/α?
� �

(a) Pressure distribution

0 10 20 30 40
10−15

10−12

10−9

10−6

10−3

100

n

ε n

(b) Error convergence

Fig. 1 The pressure distribution and error convergence for a partially porous aerofoil at angle of attack α?

and permeable-impermeable junction at c = 0. The coloured lines correspond to α = 0.4, α = 0.3, α = 0.2
and α = 0.1, where smaller α indicates a higher porosity. Note that α is defined in (23.a). In (a) the solid line
represents the exact solution (31) and the crosses (+) represent the numerical solution with 5 polynomials.

We note that the error convergence in figures 1b and 2b is not exactly linear, but instead features a “staircase” pattern.
This is not a numerical error, but is rather a feature of the physical system. Recall that partially porous aerofoils consist
of an impermeable forward part and a permeable aft part. The number of polynomials approximating the forward part is
given by N+ and the number of polynomials approximating the aft part is given by N−. The variable on the x-axis in
figures 1b and 2b is n = N+ + N−. When n increases from odd to even, N+ increases by 1, whereas when n increases
from even to odd, N− increases by 1. The shallow decrease in error is associated with an improved approximation along
the permeable aft section, whereas the steep decrease in error is associated with an improved approximation along the
impermeable forward section. Hence there are two gradients associated with the slopes in figures 1b and 2b.

IV. Conclusions
We have developed a numerical method to solve a singular integral equation associated with the aerodynamics of

porous aerofoils. The method is based on the expansion of the bound vorticity distribution as a series of weighted
Jacobi polynomials. The method is a vast improvement over the traditional Chebyshev expansion because, by accurately
capturing the crucial endpoint behaviour, the expansion converges exponentially fast. Consequently, very few terms –
usually just a single term – are required to solve the singular integral equation to sufficient accuracy. In contrast, other
research has recorded that the Chebyshev expansion requires hundreds of terms to converge to an acceptable degree of
accuracy [20].

The main application of this approach in future work is to consider the unsteady motions of porous aerofoils. When
a porous aerofoil is moving, the associated singular integral equation is actually of the Fredholm-Volterra type and is
consequently not amenable to the typical techniques of singular integral equations. The present method is proposed to
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(a) Pressure distribution
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(b) Error convergence

Fig. 2 The pressure distribution and error convergence for a partially porous aerofoil with parabolic camber
β? and permeable-impermeable junction at c = 0. The coloured lines correspond to α = 0.4, α = 0.3, α = 0.2
and α = 0.1 where smaller α indicates a higher porosity. In a) the solid line represents the exact solution (31)
and the crosses (+) represent the numerical solution with 5 polynomials.

overcome these difficulties in an accurate and rapid manner. In future work the numerical scheme will be applied to
extend classical aerodynamic functions of impermeable aerofoils e.g. the Theodorsen, Sears, and Küssner functions for
porous aerofoils will all be considered in detail. The thin aerofoil approximation could be discarded by integrating the
present approach with advanced discrete-vortex methods [21, 22] to provide more detailed insight into the effects of
aerofoil porosity on unsteady aerodynamics. This method is easily adaptable to porous cascades of aerofoils, for which
analytic solutions are available when the cascade stagger is small [24].
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